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A boundary value problem for the stationary nonlinear Boltzmann equation in 
a slab has been examined in a weighted L ~ space. It has been proved that the 
problem possesses a unique solution for boundary data small enough. The proof 
is based on the implicit function theorem. It has also been shown that for the 
linearized problem the Fredholm alternative applies. 
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1. I N T R O D U C T I O N  

The development of an existence and uniqueness theorem for a given 
equation serves several purposes: it helps to recognize whether the solution 
of a specific problem (either exact or approximate) is representative of 
more general cases; it may even determine whether a solution exists or not 
and so provide or remove support to the physical argument that suggests 
the validity of the equation. The Boltzmann equation is no exception in 
this respect. Furthermore, there is a widespread belief that any new 
existence result may throw light on the derivation of the Boltzmann 
equation itself from first principles. ~'2) 

There exists a rather complete theory of initial value problems for the 
Boltzmann equation in the space-homogeneous case, due to the pioneering 
papers of Carleman, (3) Morgenstern, (4) and Arkeryd. (s) The situation is far 
less encouraging when the space dependence is brought in. In fact, no 
global existence result is available in that case for the initial value problem 
without severe restrictions on the initial data. If a suitable smallness con- 
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dition is included, then several results are available, such as those of 
Ukai, (6) Nishida and Imai, (7) Shizuta and Asano, (8) and Shizuta (9) for the 
case of a gas near equilibrium and of Illner and Shinbrot, (~~ and Bellomo 
and Toscani (11) for a gas near vacuum in an infinite space. 

Far less is known in the steady case. Ukai and Asano (12) treated the 
flow past a body in the case of a gas near equilibrium and succeeded in 
three dimensions but not in two dimensions. This is due to the fact, pointed 
out by Cercignani, (13) that the Stokes paradox holds in kinetic theory, and 
accordingly no perturbation about an equilibrium state at rest with the 
body can give positive results in two dimensions. 

An earlier result was given by Pao (14) in the one-dimensional steady 
case. He started with an existence and uniqueness theorem proved by 
Cercignani (15) in the linearized case and was able to prove existence for 
solutions near equilibrium. Since the result of Pao, although quoted in 
Refs. 16 and 17, seems to have been ignored in the recent literature, and 
also because some details of his proof may appear insufficient, we give in 
this paper an alternative proof of Pao's result, i.e., we prove existence for 
the Boltzmann equation in a slab when the data are close to equilibrium in 
a weighted L ~ norm. 

2. EX ISTENCE OF S T A T I O N A R Y  S O L U T I O N S  

Our aim is to solve the following weakly nonlinear slab problem: 

~X~x=3f Lf+vF(f , f) ,  x e [ - 1 , 1 ] ,  ~ER 3 (1) 

f=g+,  x =  -1 ,  ~ x > 0  (2) 

f = g  , x = t ,  ~ x < 0  (3) 

To simplify notation, we assume that there is a function g such that 

g+,  ~ x > 0  g =  
g , ~ x < 0  

Then g(~) is defined for all ~ ~ R 3 and the boundary conditions (2) and (3) 
can be written as 

f ( -  1, ~ )=  g(~), ~x>O (2') 

f(1,  ~ )=  g(~), ~x<O (3') 

We state now the properties of the operators L and F that will be used 
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throughout the paper. The operator L, which acts only on the ~ depen- 
dence of f ,  can be decomposed as follows: 

L = - v  + K  (4) 

where v is an operator of multiplication by v(4) and K is an integral 
operator. The function v(~) satisfies 

Vo(1 + 1~1)~ v(~)~ va(1 + 14/)~ (s) 

where 7 depends on an intermolecular potential and 0 < y ~< 1. The operator 
L is self-adjoint and nonpositive in L2(R~) and possesses a five-dimensional 
null space N(L). If we decompose f = q + w, q ~ N(L) and w ~ N(L) l ,  then 

(f, Lf)  ~< -/~(w, w), g > 0 (6) 

To describe properties of the operator F(f, g), we define the following 
functional spaces: 

Er= { fEL~(R3):  (1 + 1r r/2 If(~)l ~L~ (7) 

with the norm 

II f lit = essup (1 + 14t2) r/2 If(4)l (8) 
~ R  3 

The fundamental property of F is then 

lit(f, g)ll,.~< c Ilfllr il gllr, r~> 1 (9) 

Equation (1) with boundary conditions (2') and (3') can be transfor- 
med to an integral equation. To this end, let us define 

Uf(x, 4) = 
f 

x 

[~d -1 { e x p [ - ( x - y ) v / l ~ x l ] } f ( y , ~ ) d y ,  ~x>O 
- - 1  (lo) 

I4xE I { e x p [ - ( y - x ) v / l ~ x l ] } f ( y , ~ ) d y ,  ~x<0  
x 

(Uog)(x, ~)= I 
g+ e x p [ - ( 1  +x)v/l~x]], ~.x>0 

g_ e x p [ - ( 1 - x ) v / ] ~ x ] ] ,  ~x<0  (11) 

Then (1) can be replaced by 

f =  Uog+ UKf + UvF( f , f )  (12) 
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Following Pao, (14) we will solve this integral equation by the implicit 
function theorem. The solution will be constructed in the space E =  
L ~ ( [  - 1, 1], E2). Let us define the following nonlinear operator: 

G(f, g )= f -  Uo g -  UKf - UvF(f, f )  (13) 

From definitions (10) and (11), estimate (9), and properties of K, which 
will be stated in the next section, it easily follows that G is well defined, 

G: E x E2 ~ E 

and is continuous with respect to both variables. 
Calculating the Frechet differential of G, we obtain 

Gr(f, g)h = h -  U K h -  2UvF(f, h) 

By virtue of (9), Gr( f ,  g) is a continuous function, as is Gg(Ji g). Since 
G(0, 0 ) =  0, to apply the implicit function theorem it is enough to show 
that 

Gr(0, 0 ) - l :  E--+E 

exists and is continuous. 
In his paper Pao (141 assumed the existence of Gr L on the basis of 

linear theory. (15) However, from results of Ref. 15 the boundedness of 
( I - U I K 1 )  -1 follows, but only for U1 and K1, which are essential 
modifications of U and K, and it is not obvious that the boundedness of 
( I -  UK) 1 can be derived from that result. 

Main I . emma.  The operator (UK) 4 is a compact operator in E. 

We postpone the proof of this lemma to the next section and derive 
the existence of Gr(O, 0) 1 from it. By the lemma, one can apply to the 
operator Gs(O, O) = I -  UK the Fredholm alternative. Then it is enough to 
show that 

( I -  UX)h = 0 (14) 

has the unique solution h = 0. 
By (14) and properties of U, the trace of h on a boundary is well 

defined and we can write (14) in the differential form 

:~ ah/Ox = Lh (15) 

h = 0 ,  x = - l ,  ~ x > 0  and x = l ,  ~ x < 0  (16) 



Nonlinear Boundary Value Problems 277 

We shall show that the only solution of the above boundary value 
problem in L 2 [ -  1, 1 ], L2(R3))is h = 0. Since E c  L 2 [ -  1, 1 ], L2(R3)), this 
guarantees the uniqueness in E as well. 

Multiply (15) by h and integrate over x and ~, using the boundary 
conditions (16), to obtain 

- fr ~xh2(-1,  ~ ) d ~ +  fr ~xh2(1,4) d~= f l  1 dx fR3 d~ hLh(17 )  

By (6) we have 

-- ~xh2(-  1, ~) d~ + Cx h (1, ~) d~ 
x<0 _v>0 

fl 
+ t~ dx d~ a wh <~O, 

1 3 
wheN(L)  • (18) 

Since all terms in (18) are nonnegative, they must all be zero. Then wh = 0 
and h is a combination of collision invariants with constant coefficients. 
But h( - 1, ~) = h(1, 4) - 0, hence h - 0. Thus, we have proved the following 
theorem: 

T h e o r e m .  The boundary value problem (1), (2'), (3') possesses in E 
a unique solution provided the boundary data g have small enough norm 
in E 2. 

3. PROOF OF THE M A I N  L E M M A  

First, our original problem will be transformed to 
L ~ [ - 1 ,  1], L~ To this end, recall that the integral operator K is 
given by 

Then 

with 

Kf(~) = fR 3 k(~, 4 1 ) f ( ~ )  d~l 

KEf(~) = fR3 kE(~' ~1) f ( ~ )  d~  

kE(r ~l) =k(~,  ~1)(1 + 1412)(1 + i~112) -1 

has the following property: If 

g(x, 4) = (1 + 1412) f (x ,  4) e L~ - 1, 1 ], L~176 
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then 

We also have 

Keg = Ke(1 + [~t2)f = (1 + I~1 ~) K f  

u(1 + 1r +lr 2) uf 

Hence, compactness of ( U K )  4 in E is equivalent to compactness of (UKe) 4 
in L ~ ( [ - 1 ,  1], L~ 

Let us consider operators U* and K* in LL([ - !, 1], L~(R3)) to which 
U and KE are adjoint. By Schauder's theorem it is sufficient to prove com- 
pactness of (K 'U*)  4 in L 1 ( [ - 1 ,  1], LI(R3)). By simple calculations we 
obtain 

t ICl-lf ' {exp[-(y-x)v/l~xl]}f(y,~)dy, ~x>0 
gV(x,  4)= x 

14_,1 1 ~  {exp[- (x -y )v / l? ,d]} f (y ,  4)dy, ~x<0 
(19) 

P 

K ' f  (x, 4)= ~-3 k*(r 4i ) f (x ,  4,)d4, 

k*(r r = k(4, r + Ir + Ir 2) 
(20) 

For the kernel k(4, 4~) the following estimate holds(IS): 

tk(4,41)l..<clr162 -ocl~-~E~-~. I--(Z-]_r J, c~>0 (2~) 

It is easy to show that (21) is valid for ke(~, r and k*(~, ~1)" 
In our proof we will follow the lines of Ref. 19, using the Dunford- 

Pettis criterion of weak compactness in L 1. To this end let us observe that 
U* and K* are bounded operators in L~([ - t, 1], LI(R3)). We will show 
that K*U*K* is weakly relatively compact in this space. 

Let us put 

x drl~2,xl- lexp[-(r-x)v/ l~zd] 3dr 4~)f(r,~l) 

which is the part of ~,~ dx d4 K ' U ' K ' f  for 42,x> O. 
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By (21) we obtain 

rl AI <~ f A dx d{ fR dg2 1~-~21 -1 e x p ( - ~  [ ~ -  ~212) 

x drl~z,.d ~exp[-(r-x)v/l~2,xl] d~ 1 [~2--~i I  -1 
x 3 

x [exp(-cr 1~2-4~12)] If(r, ~t)l 

Changing variables x --+ s = r - x, 4 -+ z = ~ - 42, we can write 

drIR3d~ 142-~11 ' [ e x p ( - ~  1~2-~12)3 If(r, ~)1 

x f z l[exp(-o~z2)] ]~2,_~1 texp(-svo/Ig2,x[) dzds 
"A (r,~2) 

where 

A(r, 42)= {(s, z ) : s = r - x ,  s>~O, z= ~ - 4 >  (x, ~)eA} 

We now want to show that by choosing the measure of the set A small 
enough, we can make tlAl/llfll as small as we please. To this end, we split 
the integral defining l/A] into two parts, I1 and 12, referring to {2.~ < ~/and 
> q, respectively. Let us consider I~ first. Since 

fA Z-I [exp(--gz2)] [~2'xl-l exp(-sv~ 
(r,r 

with c independent of [~2,.d, we have, if 

that 

fR ~1 I~ <<. c d4~ I 
3 "J- -1  

dr fo+ d42 tg2-  411 ' If(r,  4,)1 

~<c(~2+r/7 -1) HfH 

To estimate Iz, we remark that since the set A(r, 42) is obtained by trans- 
lation of A, then I~(A(r, 42))= #(A). Hence, for a given e > 0, we can choose 
6 > 0 such that if #(A) < 6, then 

fA z-~[exp(_cez2)] 1~2,xr-lexp(_svo/142.xl)dzds<etl i 
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Thus, 

and 

f f I1 d{2 d r  d~l 1~2- ~11 l [ e x p ( - ~  t~ = 1r -] [fir, ~1)t 
1~2,d > r/ 1 R 3 

x f z l[exp(--~z2)] l~2,x]-lexp(-sVo/l~2,.d)dzds 
~A (r,~2) 

CG~ 1 ]1 f ]] 

[IA] =II + I2 <~C(72 +rlT-I +C.rI-t)~3CE 2/5 ( 7 = g l / 5 ,  r / = g  3/5) 

A similar estimate can be obtained for the part of YA dx d{ -~E~r"* r f * g * f  w i th*~E  
~2,X < 0 '  

To satisfy all conditions of the Dunford-Pettis criterion, we have to 
show that for any a > 0 there exists a compact set C such that 

It-, dx d~ IK~U*K*fk < ~ [{ f I[ 
11 x R3\C 

Let C =  [ - a ,  a] x {~} ,  where 0 <  1 - a < e  ( ~  is the zero vector in R3). 
Denoting [ -  1, 1 ] x R3\C = A, we can repeat the previous estimates. This 
time, however, 

fA z - l [ exp( - -ez2) ]  L~2.xl-l[exp(--SVo/t~-2.xl)] dz ds 
(r,~_2) 

=Y z '[exp(-o~z2l]dz f2 [~2,xl l[exp(-svo/l{2,xi)]ds <ca 
R 3 (r) 

where 

A( r )=  {s:s=r-x,s>>.O, xe [ - 1 ,  - a ]  w [a, 1]} 

and #(A(r))~<2e. Hence 1e*rf,1,-* ~-e-, *~e is weakly relatively compact in 
LI( [  - 1, 1], LI(R3)). The same is true for (K'U*) 2 as a product of weakly 
compact and bounded operators. Then (K* U*)4 is compact as a product of 
weakly compact operators. 
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